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ABSTRACT

Listeria monocytogenes shows the highest versatility in foodborne disease outbreaks 
and is associated with a wide variety of foods. Recent outbreaks in deli meats in South 
Africa, frozen vegetables in Europe and ice cream in the USA have all linked contamination 
of the final product to the food-processing environment. Within the dairy context, 
historical control measures through heat (pasteurisation) have had a major impact on 
reducing the occurrence of listeriosis, but contamination of processed dairy products 
still occurs. More understanding of ecological niches within dairy manufacturing plants, 
in order to minimize the likelihood of recontamination events after critical control 
points, is still needed. The present review aims to summarise the different relevant 
actions in the food production process that need to be implemented to minimize the 
likelihood of unsafe final dairy product production in terms of L. monocytogenes.
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FOREWORD
Listeriosis is a foodborne disease caused by the pathogen microorganism Listeria 
monocytogenes. L. monocytogenes is now considered to be one of the major foodborne 
pathogens, not because of a high prevalence in foods, but due to the high morbidity / 
mortality of the disease, listeriosis, that it can cause.

Food manufacturers are expected to put in place good manufacturing practices, sanitation 
standard operating procedures and hazard analysis critical control point programmes to 
minimize environmental L. monocytogenes contamination and to minimise the likelihood 
of cross contamination in processing plants and in the retail environment. 

The safety of the final manufactured dairy product cannot rely solely on final product 
testing. Instead, it must rely on robust hazard management systems which include a 
combination of prerequisite programmes, process control and process environment 
monitoring programmes (PEM) to monitor process environment contamination (including 
pathogens and hygiene indicator bacteria such as Enterobacteriaceae and / or coliforms).

The present review aims to summarise the different relevant actions in the food production 
process that need to be implemented to minimize the likelihood of unsafe final dairy 
product production in terms of L. monocytogenes.

The work on this bulletin was conducted by an Action Team leader by François Bourdichon 
(FR) with contributions from Kieran Jordan (IE) and Denise Lindsay (NZ) under the aegis of 
the IDF Standing Committee on Microbiological Hygiene (SCMH). 

Caroline Emond 
Director General  
International Dairy Federation 
October 2019 
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1
INTRODUCTION

Listeriosis is a foodborne disease caused by the facultative intracellular pathogen Listeria 
monocytogenes. The bacterium was first described in 1926 in laboratory rabbit zoonosis 
by E.G.D. Murray and was thought to only infect animals, until 1929 when the first human 
case of listeriosis was reported. L. monocytogenes was only recognised as a foodborne 
pathogen some 60 years later in an outbreak linked with coleslaw (1981) (Schlech et al., 
1983). After that initial outbreak and the ones to follow, L. monocytogenes is now considered 
to be one of the major foodborne pathogens, not because of a high prevalence in foods, 
but due to the high morbidity / mortality of the disease, listeriosis, that it can cause 
(de Noordhout et al., 2014). Following the risk assessment performed by the Joint FAO/
WHO Expert Meetings on Microbiological Risk Assessment (JEMRA) on L. monocytogenes 
(JEMRA, 2004), guidelines were published by the Codex Committee on Food Hygiene 
defining microbiological criteria in ready-to-eat (RTE) foods depending on the growth 
potential of L. monocytogenes (Codex Alimentarius, 2007). Codex member states have 
updated their regulations accordingly (FSANZ, 2014; Todd et al., 2011). Guidelines published 
by Health Canada (Health Canada, 2011) are also aligned to the proposed rationale, while 
the USDA-FDA published another approach of “zero tolerance” of L. monocytogenes in 
RTE foods (FDA, 2008) although the classification vs. growth potential was considered in 
their prior risk assessment (FDA, 2003). Following a recent foodborne outbreak with low 
level of contamination in the finished product, the position of the FDA is favouring a “zero 
tolerance” policy (Archer, 2018).

Listeriosis is now recognized to be almost exclusively foodborne. Food manufacturers are 
expected to put in place “good manufacturing practices, sanitation standard operating 
procedures and hazard analysis critical control point programs to minimize environmental 
L. monocytogenes contamination and to minimize the likelihood of cross contamination 
in processing plants and at retail” (EFSA, 2018; ILSI, 2005; JEMRA, 2004). The topic of the 
present review is focused on the dairy industry.

As Listeria spp. are ubiquitous, the safety of the final manufactured dairy product 
cannot rely solely on final product testing. Instead, it must rely on robust hazard 
management systems which include a combination of prerequisite programmes, process 
control and process environment monitoring programmes (PEM) to monitor process 
environment contamination (including pathogens and hygiene indicator bacteria such as 
Enterobacteriaceae and / or coliforms). Listeria innocua, considered to be the genetic 
ancestor of the genus, is a better ecological competitor than L. monocytogenes (Liu et al., 
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2009). Searching for Listeria spp., in particular in the dairy processing environment, as 
discussed later, can better confirm the success of having different hygiene zones and the 
critical points identified by hazard analysis critical control plan (HACCP) to minimize the 
likelihood of contamination with L. monocytogenes, therefore giving better food safety 
assurance to the dairy business operator.
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2
THE RISE OF A FOODBORNE
PATHOGEN: LISTERIA 
MONOCYTOGENES IN 
THE DAIRY CHAIN

L. monocytogenes is well known for its presence in raw milk (Lovett et al., 1987; Paul et al., 
2015) and in raw milk products which have resulted in foodborne disease outbreaks (Beckers 
et al., 1987; Verraes et al., 2015). In addition, Listeria spp., including L. monocytogenes, 
are well known persistent bacteria in food manufacturing environments, including the 
environment of the pasteurisation process of dairy products (Carpentier and Cerf, 2011). 
Data on numerous recalls of pasteurised dairy products in the last five years (see Table 1 
for examples based on available online data) shows that Listeria is a continuing issue for 
processed dairy manufacturers. In addition, between 1985 and 2019, there have been 40 
confirmed major outbreaks of listeriosis associated with commercially pasteurised dairy 
products which have been recorded in literature or have made new headlines (Table 2). In 
the majority of these cases (18/22 – 82%), where a source was identified, L. monocytogenes 
was found in niches in the dairy processing environment and contamination of final product 
occurred due to cross-contamination post the heating (pasteurisation) step.

Out of the numerous species of the Listeria genus, the three most common species 
associated with the dairy manufacturing environment are L. innocua, L. monocytogenes 
and L. seeligeri (Barancelli et al., 2014; McIntyre et al., 2015; Rückerl et al., 2014). Others 
which are also isolated include L. ivanovii, L. welshimeri and occasionally, L. grayi (Alvarez-
Ordóñez et al., 2015; Barancelli et al., 2014; Silva et al., 2003). The presence of L. innocua 
in the processing environment is a good indicator that applied hygiene regimens are not 
adequate to mitigate for the presence of Listeria spp. in the plant and therefore, there is 
a likelihood of L. monocytogenes contamination (Ryser and Marth, 2007). This is because 
L. innocua and L. monocytogenes have been found to behave similarly in dairy products 
(Petran and Swanson, 1993; Ryser and Marth, 2007) and within dairy manufacturing 
environments (Lui et al., 2009). It is also commonly accepted that the presence of 
L. monocytogenes in dairy manufacturing plants is significant in wet areas, compared 
to those that remain dry (Redfern and Verran, 2017; Rückerl et al., 2014). In some cases, 
processing water itself can harbour L. monocytogenes. For example, in 2002, processing 
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water which had been contaminated by birds carrying L. monocytogenes resulted in an 
outbreak from consumption of cheese in Canada (Table 2) (McIntyre et al., 2015). In addition, 
when present, L. monocytogenes tends to be more common on non-food contact surfaces 
(non-FCS), compared to food contact surfaces (FCS) (Barancelli et al., 2014; Muhterem-
Uyar et al., 2015). This, however, might be a bias of the process environment monitoring 
in place which tends to focus on the potential niches where Listeria spp. survives for 
a long time in the processing environment. Some examples of where Listeria has been 
found historically in dairy processing plants include, but are not limited to: holding tanks, 
conveyor belts, milk and brine fillers (Pritchard et al., 1995); crate and case washers, 
floor, foot baths and foot mats (Klausner and Donnelly, 1991; Kabuki et al., 2004). More 
recent studies have shown harbourage niches to include floors and floor drains, transport 
trolleys, pallets and tables (Rückerl et al., 2014); cheese brine, brining baths and associated 
brining equipment (Alessandria et al., 2010; Barancelli et al., 2014); cheese vats and cloths 
and curd cutters and storage coolers (Kousta et al., 2010). Non-FCS act as reservoirs for 
FCS contamination and subsequently, for final product contamination, as has been starkly 
illustrated in the recent outbreak of L. monocytogenes in Blue Bell ice cream in the USA 
(Table 2) (CDC, 2015a).

Regulatory approaches applied to L. monocytogenes in foods mainly focus on end-product 
testing, with a product classification in three main categories (ability to support growth, 
no growth demonstrated and infant/medical food). Different microbiological criteria apply 
considering the category of the food product. 

Countries differ in their regulatory approach to the presence of L. monocytogenes in RTE 
food. Codex Alimentarius guidelines propose that for RTE foods in which growth will not 
occur, a rejection level is set at 100 colony-forming units (CFU) per gram of the products in 
one or more of five samples of 25g. In RTE foods in which growth could occur, absence in 
5 x 25-grams product samples is required. If the ability to grow has not been determined, 
the ability to grow is presumed and the criterion of absence is applied (Codex Alimentarius, 
2007). 

Australia (FSANZ) and New Zealand (MPI) follow these criteria as set out by Codex (Anon, 
2014). In the European Union, Commission Regulation (EC) No 2073/2005 sets limits which 
essentially align to Codex Alimentarius guidelines, with complementary introduction of 
criterion (absence in 10 x 25-grams product samples) for infant products and RTE foods 
for special medical purposes. In Canada, update of the “Policy on L. monocytogenes in 
RTE foods” has been completed in 2011 and is aligned to the European approach (Health 
Canada, 2011).

In the United States, the United States Department for Agriculture (USDA) maintains a 
policy of “zero-tolerance” for L. monocytogenes in RTE foods (Archer, 2018; FDA, 2008). 
Further details on regulations relating to L. monocytogenes can be found in a Special Issue 
of the journal, ‘Food Control’ (Todd, 2011), although there might have been some changes 
to this in the intervening years.
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3
GROWTH CHARACTERISTICS OF 
LISTERIA MONOCYTOGENES

L. monocytogenes tolerates harsh conditions and could therefore survive or grow in 
different types of foods. The organism can grow at low temperatures (0.6 to 45°C) and in 
a wide pH range. It can also grow in salt concentrations of up to 14% and tolerates low 
water activity (Table 3).

L. monocytogenes has the ability to grow at refrigeration temperatures (4°C) (Lake et al., 
2009). It survives under freezing conditions (Metzger et al., 2015) and has been found in 
ice cream, ice milk, sherbet and ice cream novelties of various types (El-Kest and Marth, 
1992). L. monocytogenes is rapidly inactivated at temperatures above 70°C and the D-value 
at 72°C in milk has been estimated at between 0.9 – 2.7s (Sutherland and Porritt, 1997).

The pH optimum for growth is 7.0, with a range from 4.4 to 9.4 (Lake et al., 2009). 
Occasionally, some strains have shown potential for growth as low as pH 4.1 (Jay, 2005). 
These values are measured with HCl as the major acid source. For fermented dairy 
products, L. monocytogenes seems unlikely to grow below pH 5.2 (Sutherland and Porritt, 
1997) due to the inhibition of lactic acid. Growth of L. monocytogenes was demonstrated 
not to occur at concentrations exceeding 6.35 mM undissociated lactate (Aryani et al., 
2016; Wemmenhove et al., 2018). Tolerance to harsh acidic stress (pH 3.5) is induced in 
L. monocytogenes if exposed to mild acidity (pH 5.5) for a time (O’Driscoll et al., 1996). 
These acid adapted cells subsequently also survive better in fermented dairy products, 
such as cottage cheese, yogurt and whole-fat Cheddar cheese (Gahan et al., 1996).

L. monocytogenes grows optimally under microaerophilic conditions, but it also thrives 
well both aerobically and anaerobically (Müller-Herbst et al., 2014). L. monocytogenes 
can grow in atmospheres containing relatively high levels of CO2, but inhibition occurs at 
elevated levels (Bennik et al., 1995). L. monocytogenes can grow even in relatively high 
(e.g., 30%) CO2, but is inhibited under 100% CO2. Growth was not retarded by a 5–10% CO2 
atmosphere (Lake et al., 2009).

The minimum water activity (aw) permitting growth is considered as aw = 0.92 with 11.5% 
NaCl and 0.93 with 40% sucrose (Jay, 2005). L. monocytogenes has the ability to survive in 
dry foods (aw = 0.83) (Beuchat et al., 2011) and more recently has been shown to survive in 
flour (Taylor et al., 2018), so its potential to survive in low moisture dairy products should 
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not be underestimated. However, L. monocytogenes has been shown to progressively die-
off in non-fat skim milk powder with time of storage (Doyle et al., 1985). Potassium sorbate, 
as an example of a commonly used preservative in food, inactivates L. monocytogenes at 
2000 – 3000 ppm (pH 5.0) (Lake et al., 2009). 
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4
PATHOGENESIS OF 
LISTERIA MONOCYTOGENES

Listeria diseases have been described in more than 40 animal species. The mechanism 
of pathogenesis is conserved and generally leads to abortion in pregnancy, septicaemia, 
meningitis and encephalitis, as well as some reported cases of diarrhoea, skin infections 
and endocarditis (Farber and Peterkin, 1991). Thirteen serotypes have been identified for 
L. monocytogenes. All of these might be associated with human listeriosis; however, most 
human infection is associated with the serotypes 1/2a, 1/2b or 4b. The hospitalisation rate 
is over 90% and a death rate of about 24% of those infected (de Noordhout et al., 2014). A 
recent study demonstrated that Galleria mellonella insect larvae might be a useful animal 
model for studying the pathogenicity of L. monocytogenes (Martinez et al., 2017).

Two types of disease are associated with L. monocytogenes, non-invasive or invasive 
listeriosis. 

Non-invasive listeriosis (referred to as febrile listerial gastroenteritis) is the milder form. 
Illness occurs within 24h of ingestion and includes diarrhoea, fever, headache and myalgia 
(muscle pain). Outbreaks of this disease have generally involved the ingestion of high 
doses of L. monocytogenes by otherwise healthy individuals. The vast majority of these 
cases show no evidence of invasive disease beyond the intestine and it is usually self-
limiting (2 days) (Ooi and Lorber, 2005).

Invasive listeriosis affects ‘high-risk individuals’ (YOPI – which includes the young, the 
old, pregnant women, neonates and immune-compromised adults) (McLauchlin et al., 
2004). Invasive listeriosis can have an incubation time of between two weeks and three 
months (McLauchlin et al., 2004). Infection during pregnancy can occur at any stage, but 
is most often reported during the third trimester. The mother usually exhibits mild flu-
like symptoms, but the unborn or newly born infant can develop severe systemic disease 
(McLauchlin et al., 2004). Stillbirths, premature termination of pregnancy or live birth of 
infected neonates is common. The immune systems of foetuses and new-borns are very 
immature and are extremely susceptible to these types of infections. Overall, this disease 
is characterised not only by the severity of the symptoms in susceptible individuals, but 
also by a high mortality rate.
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The probability of L. monocytogenes in a food causing an illness varies and depends 
on several factors, including strain type and differences in host susceptibilities. While 
theoretically it takes one cell to cause listeriosis, the dose of L. monocytogenes cells 
causing illness in healthy individuals has been estimated at between 107 – 109 cells and 
105 – 107 cells for high-risk people (Farber et al., 1996; Dalton, 1997). However, more 
recent outbreaks have occurred with much lower doses (<1000 CFU in some cases). For 
example, during a butter outbreak in Finland, it was estimated that the daily dose ranged 
from 101 – 105 CFU/day (Maijala et al., 2001) and the US ice cream outbreak in 2015 
indicated an even lower potential dose (the lowest contamination level of the ice cream 
was estimated at 8 CFU/g, although temperature abuse and growth of L. monocytogenes 
in the milkshakes made from this ice cream causing the illness in hospital patients, could 
not be ruled out) (Pouillot et al., 2016). Further to this, a study by Chen et al. (2006) has 
also indicated that there is a wide variation of virulence associated with L. monocytogenes 
isolates, depending on serotype and strain, which will also influence the numbers of cells 
needed to cause illness.
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5
SURVIVAL OF LISTERIA SPP. AND 
L. MONOCYTOGENES DURING 
THE DAIRY MANUFACTURING 
PROCESS 

L. monocytogenes can be found in a large variety of habitats including soil, sewage, water, 
faeces of healthy animals and humans, vegetation and silage (Welshimer and Donker-
Voet, 1971). Decaying plant material and silage are thought to be the main route of 
infection for farm animals. Farm animals are not considered to be the main reservoir for 
L. monocytogenes, although the organism can cause animal disease and infected dairy 
cattle can disseminate the organism throughout the farm environment (Nightingale et 
al., 2004). Infection of the milk from the udder in cases of clinical or sub-clinical mastitis 
can also occur (Jensen et al., 1996; Hunt et al., 2012). In terms of human infection, 
L. monocytogenes is carried asymptomatically in the faeces of 2–6% of the population and 
has been found in the nasal cavities and on hands of food workers (El-Shenawy, 1998), 
but human-to-human transmission is not recorded as a main route of infection (with the 
exception of mother to foetus transmission) (Lake et al., 2009). Ingestion of food is the 
main route of infection in humans (EFSA, 2018).

L. monocytogenes is frequently present in foods of animal (certain dairy products, various 
meats and meat products such as beef, pork, fermented sausages, seafood and fish 
products) and plant origin (fresh produce such as radishes, cabbage, celery, melons and 
cantaloupes, caramel apples, romaine lettuce and sprouts) and can become endemic in 
food processing environments (Gandhi and Chikindas, 2007). It might also be present in 
cooked foods as a result of post-process contamination or inadequate heat treatment, 
such as in ready-to-eat meats (Simmons et al., 2014). Dairy products which have been 
more frequently associated with L. monocytogenes include raw milk and soft cheeses, in 
particular white-moulded soft cheeses where growth can occur due to the consumption 
of lactic acid by the mould, resulting in an increase in pH on the surface. However, recent 
outbreaks have shown that L. monocytogenes can also be present and cause illness in 
other processed dairy products, such as ice cream and pasteurised milk products (due to 
post-heat recontamination events). 
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As previously mentioned, Listeria spp. and L. monocytogenes have been isolated from 
a variety of sites within dairy manufacturing plants, although these bacteria are most 
frequently found in moist environments or areas with condensation or standing water 
or food residues, including drains, floors, coolers, conveyors and case washing areas (for 
review, see Carpentier and Cerf, 2011). Biofilms within manufacturing plants, including 
in dairy processing, might serve as a source of L. monocytogenes for processed foods 
(Valderrama et al., 2013).

To minimize the likelihood of L. monocytogenes cross contamination in dairy 
manufacturing plants, monitoring the process environment, as suggested in FSMA (Food 
Safety Modernization Act, 2011 – USA), FSANZ (Australia and New Zealand, 2014) and EU 
regulation 2073/2005 (European Union, 2005), is carried out. For example, Article 5 of 
EU 2073/2005 stipulates “food business operators manufacturing RTE foods, which may 
pose a L. monocytogenes risk for public health, shall sample the processing areas and 
equipment for L. monocytogenes as part of their sampling scheme”. Although this doesn’t 
mention the frequency of sampling or the number of samples, the appropriate sampling 
schemes under responsibility of the food operator should be discussed with the relevant 
regulatory authorities to ensure that an appropriate finished products and processing 
environment sampling plan is implemented. 
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6
GROWTH POTENTIAL OF LISTERIA 
SPP. AND L. MONOCYTOGENES IN 
DAIRY PRODUCTS 

In general, relatively high numbers of L. monocytogenes are required to cause disease. 
Due to intrinsic factors, such as undissociated lactate in some semi-hard cheeses or in 
acidic products such as yoghurts, not all dairy products could support the growth of 
L. monocytogenes to achieve the high numbers required (Aryani et al., 2016). Additionally, 
cross contamination from the processing environment is unlikely to result directly in 
such high numbers. Therefore, the ability of the dairy products to support the growth of 
L. monocytogenes is paramount. The EU and other jurisdictions have published guidelines 
for undertaking challenge studies to determine the ability of food to support the growth 
of L. monocytogenes (Anon, 2014; Beaufort et al., 2014; Health Canada, 2011).

Predictive modelling can be used as a pre-assessment to artificial contamination studies, 
to estimate the ability and extent of L. monocytogenes growth in a dairy product. In 
silico models such as “Combase” (Baranyi and Tamplin, 2004), Sym’Previus (Leporq et al., 
2005) and “Pathogen Modelling Programme” (USDA, 2018) can be used for this purpose. If 
growth is predicted by the computer-based programmes, which are mainly based on broth 
systems, other characteristics of the dairy product not accounted for in the models, could 
potentially inhibit growth of L. monocytogenes, such as for example, competing microflora 
(Jordan et al., 2018). Using Combase, Schvartzman et al. (2011) predicted growth in the 
cheese matrix for 40% of cases, while no growth was actually observed.

The ability of dairy products to support the growth of L. monocytogenes must be determined 
for each food type, in particular if they differ in water content, pH profile during shelf-
life, starter cultures applied and surface treatment, since different formulations and 
manufacturing have a significant impact on the growth potential of L. monocytogenes. 
Furthermore, any changes in the ingredients or process of a dairy product, either due 
to attempts to extend the shelf-life of a product, or to address consumer’s expectations 
on new formulation, could lead to a change in the ability of L. monocytogenes to grow 
or die-off. Validation studies, including challenge studies where needed, might need to 
be undertaken with each newly developed dairy product. Extrapolation from one food 
type to another, or from generic models without validation of the specific cheese is not 
appropriate (Schvartzman et al., 2010).
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In cases where growth potential is demonstrated, i.e., ≥ 0.5 log increase in numbers 
from day 0 to day end of the challenge study (cf. the EURL L. monocytogenes Technical 
Guidance document, Beaufort et al., 2014), the initial numbers present and the growth 
rate, will determine if the numbers will exceed the limit of 100 CFU/g during shelf-life. 
The EURL guidance document outlines a method to conduct artificial inoculation studies 
to determine growth rate. Challenge studies can either determine growth potential or 
growth rate of L. monocytogenes in a dairy matrix. According to these guidelines, when 
testing growth rate, each strain must be tested individually, sampling must be undertaken 
on at least ten occasions (for modelling purposes) and food storage must be carried out at 
a uniform temperature (Beaufort et al., 2014). Minimizing the growth of L. monocytogenes 
at retail level and further on in the distribution chain could lead to a 37% reduction in 
listeriosis cases (EFSA, 2018).
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7
ANALYTICAL METHODS FOR 
DETECTION, ENUMERATION 
AND IDENTIFICATION

As defined in the Codex document, CAC GL 21/1997 modified in 2013 (Codex Alimentarius, 
2013), analytical methods and their performance parameters are key components of 
microbiological criteria. Traditional culture-based methods have been continuously 
implemented since the early 1980s. Culture-based testing for Listeria spp. and 
L. monocytogenes is defined by the recently published standards ISO 11290 Parts 1 and 
2 (ISO 2017a, and 2017b). However, in the dairy production business, the time taken to 
release final products due to waiting for pathogen results is a cost to the business. More 
rapid alternative methods are now widely available, based on immune-enzymatic assays 
or molecular detection, as long as the alternative method meets regulatory requirements 
such as those set out in EU 2073/2005: Article 5 – “The use of alternative analytical 
methods is acceptable when the methods are validated against the reference method 
in Annex I and if a proprietary method, certified by a third party in accordance with the 
protocol set out in ISO 16140 or other internationally accepted similar protocols, is used. 
If the food business operator wishes to use analytical methods other than those validated 
and certified as described in paragraph 3, the methods shall be validated according to 
internationally accepted protocols and their use authorised by the competent authority”. 
ISO 16140 Part 2 (ISO, 2016) is usually used to validate such alternative microbiological 
methods. A further aspect which is important for dairy manufacturers is that an appropriate 
method should be implemented in a competent laboratory working under ISO 7218:2007 
(ISO, 2007) and ISO 17025:2017 (ISO, 2017c). 

Methodologies other than ISO methods are also available, such as GB 4789.30-2016 (GB, 
2016), used in China and the USFDA BAM method for Listeria monocytogenes in foods and 
environmental samples (Hitchins et al., 2017), used in the USA. Alternative (proprietary) 
methods do not have a recognized validation and verification scheme in China, while in 
the United States, an ISO 16140 Part 2-based approach by AOAC is available, yet based on 
USFDA BAM as reference method and not ISO 11290 Parts 1 and 2 (ISO 2017a, and 2017b).

Alternative proprietary methods for Listeria spp. and L. monocytogenes typing can be 
found for Europe and ISO scheme on the AFNOR website (https://nf-validation.afnor.
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org/en/food-industry/listeria-monocytogenes/), MICROVAL website (http://microval.
org/en/issued-certificates/) and for the United States, the FSIS website (http://content.
govdelivery.com/accounts/USFSIS/bulletins/842385). It is important to verify in the 
available validation dossier that the scope of the validation (food matrices) covers the 
analytes of concern and the sampling technique (e.g., pooling or not).

Typing methods are required for source tracking of contamination pathways of Listeria spp. 
and most specifically L. monocytogenes. For many years, pulsed field gel electrophoresis 
(PFGE), a restriction enzyme-based analysis which provides a fingerprint of a bacterial 
genome, has been used until most recently, as the gold standard for identification and 
clustering (determining clonality) of isolates. However, whole genome sequencing (WGS) 
was first introduced in the USA in 2008 and was instrumental in solving the Blue Bell ice 
cream Listeria outbreak. Since then, it has replaced PFGE to become the preferred FDA 
method for identification and tracking of pathogen isolates in food samples and in food 
manufacturing sites. Numerous food safety authorities now use the technique widely in 
other regions of the world and especially in the European Community (Hendriksen et al., 
2018). WGS is an analytical technique which allows the determination of the complete 
genomic DNA sequence. Due to its accuracy in determining how bacteria are related to 
each other, WGS improves the detection, surveillance and response to foodborne diseases 
and outbreaks. The technology provides uniform typing systems across the environmental, 
animal, food and human sectors, and offers the potential to trace foodborne contamination 
back to its microbial sources beyond geographical differences (FAO-WHO, 2016).

WGS is more accurate than a serotype determination and more discriminatory than 
PFGE, ribotyping and RFLP techniques. It can show relationships between strains with 
the highest resolution and in a particularly limited time. WGS provides the ability to: 
differentiate sources of contamination, even within the same outbreak; determine 
which ingredient was originally contaminated by the pathogen associated with an illness 
outbreak and therefore narrow the search for the source of a contaminated ingredient; 
determine unexpected vectors for food contamination and provide information for root 
cause analysis and determine phenotypic properties of isolates, such as resistance or 
sensitivity to cleaning agents or adherence to surfaces (Kovac, 2017).

The identification can be shared and compared between laboratories across the world 
using open access international databases such as GenomeTrakr. Food microbiologists 
and clinical microbiologists can now pinpoint the origin of a foodborne contamination by 
comparison with clinical isolates. As a result, foodborne illnesses are being more easily 
tracked to a specific location. Regulatory bodies can now identify the origin of small 
outbreaks with a limited number of clinical isolates or identify long lasting contamination 
events causing limited numbers of cases in the population. 

In time, it is predicted that WGS will become the new standard for isolate identification 
and replace other methods to accomplish this. In order to keep track of historical data 
when changing the identification technique, it is important to retain if not all isolates, 
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at least the type strains of each culture. Having a strain collection is important as WGS 
becomes more widely used and local / industrial / national initiatives should be taken to 
gather those isolates.

Currently, the major challenges with the application of WGS are the cost of this typing 
method in comparison to other typing methods, the lack of a WGS technical standard on 
methodology and no internationally agreed “cut-off” values that differentiate between 
strains (single nucleotide polymorphisms [SNP]). The acceptable number of SNPs can be 
specific to each microorganism. Interpretation of results does require bioinformatics 
specialists, while no internationally accepted approach is presently in place to protect 
WGS information stored in databanks from misuse. Food safety outbreaks or incidents 
cannot be solved solely based on WGS data, but must always be linked to epidemiological 
data for confirmation.

PFGE has been used as a gold standard for strain typing for more than 30 years. Due to 
capacity building (training, equipment, premises, data processing…), this technology can 
not be replaced overnight by a methodology that is not yet standardized. Also, in some 
situations where WGS would be too costly to set up, PFGE will continue to be a valuable 
tool for analysis.

For more information on using WGS in the food industry, a recent review by Jagadeesan 
et al. (2019) provides readers with a description of the various WGS technologies in use 
today, guidelines on determining SNP differences for various bacteria and which previously 
validated SNP-based tools to use, some of the validated databases recommended for use 
in comparing core-genome multi locus sequence typing (cgMLST) schemes for common 
foodborne pathogens, the most suitable references to use to provide guideline for 
phylogenetic tree analysis and a selection of the more commonly used bioinfomatics tools 
and pipelines needed for WGS analysis. 
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8
CONTROL MEASURES OF 
L. MONOCYTOGENES ALONG 
THE DAIRY MANUFACTURING 
PROCESS

Historically, heat treatment (pasteurisation of dairy products) is applied to raw materials 
to reduce the initial microbial contamination to acceptable levels. The current treatments 
are based on either industry guidance, codes of practice or regulation founded mostly on 
a historical approach established on the population reduction required. In terms of dairy 
products, an overall recognised pasteurisation treatment of raw milk for 15s at 72°C would 
result in a > 6-log reduction of L. monocytogenes. In addition, growth of L. monocytogenes 
in RTE food can be inhibited using one or more of the following control measures:

• pH less than or equal to 4.4 (EU 2073/2005, FDA, 2018)
• Water activity less than, or equal to 0.92 (e.g., milk powder in dairy manufacture) or 

less than, or equal to 0.94 in combination with a pH of less than, or equal to 5.0 (EU 
2073/2005, FDA, 2018)

• Formulation containing one or more inhibitory substances which, alone or 
in combination, minimize the likelihood of growth of L. monocytogenes (e.g., 
biopreservation with food starters such as those used in hard type cheeses 
manufacturing (Wemmenhove et al., 2018) and undissociated lactic acid at 
concentrations above 6.35 mM (Aryani et al., 2016)

• Strict maintenance of cold chain (e.g., chilling of liquid milk in dairy manufacture)
• Minimizing the likelihood of cross-contamination (e.g., adherence to good 

manufacturing practices, GMP) and re-contamination (e.g., good hygiene practices, 
GHP) of heat-treated food products (e.g., separation of the raw and processed sides 
of the milk manufacturing environment).

Due to low levels occurring in most foods, final product testing is not effective. It is 
an important approach only where L. monocytogenes is likely to occur frequently. In 
cases where L. monocytogenes does not occur frequently, final product testing provides 
little information on product contamination, its origin and how to mitigate it. Any action 
should be focused on continuous and biased sampling of the processing environment, 
targeting areas with a positive result for additional hygiene measures, e.g., root cause 
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analysis. As it has been noted that contamination of non-FCS with Listeria spp., including 
L. monocytogenes, usually precedes contamination of FCS (GMA, 2014), a more beneficial 
strategy therefore, is to have in place a validated and effective PEM programme, including 
Listeria spp., as then the likelihood of cross-contamination to final dairy products is 
reduced.

As Listeria spp. are ubiquitous in the environment, complete elimination of the genus, and 
L. monocytogenes in particular, from the processing environment is an unrealistic aim. 
Control of L. monocytogenes in the processing environment is, however, an achievable 
aim. Achieving this control requires awareness of the ecology of L. monocytogenes. Since 
the other species of the Listeria genus are not pathogenic, their presence in the dairy 
manufacturing environment, while not constituting a public health risk, is considered to 
be a good indication for the potential presence of L. monocytogenes (Liu et al., 2009; 
Ryser and Marth, 2007). This is not an indicator as classically understood while performing 
testing of Enterobacteriaceae and /or coliforms for hygiene, but rather as an indication 
of the capacity of L. monocytogenes to survive in the processing environment and to 
anticipate its introduction. Testing for Listeria spp. in PEM and reacting to positive results 
as if they were L. monocytogenes, provides for a more sensitive and broader verification 
and control programme, than would testing for L. monocytogenes alone, particularly 
considering the expected very low prevalence of this pathogen in a well maintained, 
cleaned and sanitised dairy processing environment. 

Sampling a dairy processing environment for L. monocytogenes is based on a seek and 
search (and destroy) bias to look for harbourage sites where contamination could occur, 
as opposed to selecting sampling sites for negative results to adhere to regulations. 
A well-designed PEM is one which actually finds the pathogen of concern, so that the 
data can be used to track any trends towards the increase or decrease of the organism 
in the dairy-processing environment. Molecular typing of isolates which are obtained 
during a well defined PEM can be expensive, but it does provide valuable information 
on the characteristics of the isolates obtained and on the nature of the contamination. 
For example, repeated isolation of a strain with the same molecular profile can indicate 
persistent contamination, which would require an alternative course of action than if each 
strain was different. In order to reduce molecular analysis costs, molecular typing need 
only be done for isolates obtained from high-risk areas.

Sampling of a processing environment should be based on product proximity, including 
looking for harbourage sites close to the end product. PEM for L. monocytogenes and 
Listeria spp. should be focused on the wet zones of the environment, e.g., the cleaning 
station, water condensates and drains (if any) (Carpentier and Cerf 2011, Valderrama 
et al., 2013), as compared to PEM for Salmonella which usually focuses on dry areas 
with Enterobacteriaceae as hygiene indicators. For example, one of the most common 
contaminated areas for L. monocytogenes are floor drains, as any contamination throughout 
the facility is likely to be washed through the drain where L. monocytogenes can persist 
in biofilms (for review, see Carpentier and Cerf, 2011). Drains should not necessarily be 
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considered as the only harbourage site, but they might also indicate the presence of a niche 
in the surrounding area. Note that monitoring the process environment is not monitoring 
the efficacy of cleaning procedures. Sampling of cleaned surfaces for L. monocytogenes 
should only be done to evaluate the efficacy of the cleaning procedures after detection 
of positives samples. 

For an effective PEM, sampling should be done with a sponge-type swab or gauze swab, 
allowing sufficient surface area to be sampled according to the recommendations of ISO 
18593-2018 (ISO, 2018). Adequate sampling will allow for a proactive approach to the 
food safety management system, where finished product testing is a reactive approach. 
L. monocytogenes contamination of final dairy products is a much more serious problem 
which requires significantly more intervention than contamination at the processing 
environment stage. Regulations on process environment sampling, as in article 5 of EU 
Regulation 2073/2005 or FSMA expectations should be duly implemented. The EU document 
on guidance for sampling provides recommendations with regard to timing of sampling, 
locations for sampling, among other things (EC, 2012). The most informative sampling 
sites can vary depending on the facility and the type of food produced. Information can be 
obtained from screening of FCS and non-FCS and it is important to have a balance between 
these different samples. Adequate sampling for L. monocytogenes will help identify an 
issue early and, thus enable it to be dealt with immediately. Such a programme should be 
reviewed regularly, depending on the results that are obtained.

In a medium to large processing facility, hygienic zoning such as establishment of critical 
control areas (CCAs) can be considered. CCAs should be clearly marked and hygiene 
barriers should minimize the likelihood that the CCAs will be contaminated through cross-
contamination by inappropriate practices. Footbaths and change of personal protective 
clothing, the two most common zoning barriers, can be incorporated to reduce the 
likelihood of cross-contamination with L. monocytogenes. The definition of CCAs can 
facilitate targeted sampling in those areas and, therefore, different actions based on 
positive results from different CCAs. For example, the closer one gets to a final dairy 
product contact surface, the higher the likelihood of a positive result which could result in 
cross-contamination of processed dairy products. In small dairy processing facilities, the 
definition of CCAs with hygiene barriers might not be feasible, but the concept of CCAs 
should be considered, with restricted access for untrained staff to dairy product contact 
areas. 

Sampling frequency should be assessed on a case-by-case basis for each processing 
environment. When a food-processing environment is being sampled for the first time, a 
broad sampling approach should be taken to identify contamination routes and potential 
harbourage sites. If a history of monitoring is available, or the contamination status 
is already known, a restricted number of sampling sites can be determined. Sampling 
frequency should be adapted to new sampling points if negative results are obtained, but 
should be increased again if positive results are obtained or if there are changes to the 
processing environment or manufacturing process (EU, 2005). Such changes in sampling 
should only be undertaken in consultation with external expertise, as appropriate.
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During renovation or construction work, hygiene measures can be difficult to maintain. 
It can be difficult to recommend the use of hygiene protection (overshoes, overcoats) to 
craftsmen and building workers, or hygiene measures for building materials often stored 
outdoors before use. Products might still need to be produced in processing rooms adjacent 
to the construction area. It is important to be aware of the increased likelihood of cross 
contamination during such construction work. Construction of a physical barrier between 
the production area and the construction zone is important as a first step. Increased 
sampling to monitor the processing environment, combined with increased awareness, 
will also facilitate a reduction in the likelihood of cross-contamination. Recording of 
data obtained is critical for a dairy processor. As well as recording the results of a dairy 
processing monitoring programme, it is also important to record data on ingredients and raw 
materials so that any correlations can be identified, for example, processing environment 
contamination coinciding with a batch of raw material or a change in supplier. Equally as 
important to recording the data, is analysing the data. Processors should look for trends 
in their test results by either plotting them on a graph or putting them in a table. In the 
case of processing environment monitoring in particular, a graph of the results will help 
the producer see a trend towards unsatisfactory results and allow them to investigate and 
take appropriate actions to correct the situation. 

Maintenance of a completely L. monocytogenes-free processing environment is relatively 
difficult to achieve as many different factors can affect occurrence. These can include, for 
example, contaminated incoming raw materials, staff members as carriers, insufficient 
cleaning strategies and sampling programmes, the facility design to minimize the 
likelihood of contamination, the location of the facility near a farm and so on. Another 
major factor in the occurrence of L. monocytogenes is management and staff member’s 
awareness of the hazard and education of the processing facility and contamination issues 
therein. Lack of such awareness can lead to significant problems with end products which 
can result in product recalls, damage to company reputation, lawsuits, illnesses or even 
death. Thus, awareness, sampling and analysis are key trend factors in successful control 
of L. monocytogenes. If occurrence is detected it can be eliminated through targeted 
intervention measures, thus minimizing the likelihood of final product re-contamination 
(Leong et al., 2016).

In terms of chemical disinfection to control L. monocytogenes, the choice of sanitizers by 
food business operators is often limited by regulatory approval. The FDA recommends 
the use of sanitisers containing quaternary ammonium compounds (QACs, or QUATS) 
to be effective and, also because they have a residual antimicrobial effect (FDA, 2008). 
This recommendation correlates with studies which have shown that QACs may be more 
effective against L. monocytogenes biofilms than chlorine-containing sanitisers (Olszewska 
et al., 2016). Some studies have, however, shown that L. monocytogenes can develop 
a tolerance to treatment with QACs (Mereghetti et al., 2000; Olszewska et al., 2016). 
Studies have shown a two to four-fold increase in tolerance of L. monocytogenes cells to 
QACs after exposure for several hundred generations (Kastbjerg and Gram, 2012) and the 
presence of plasmids in some strains can further contribute to the tolerance (Naditz et al., 
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2019). By contrast, no such increase in tolerance was found for hypochlorite or peracetic 
acid/hydrogen peroxide (Kastbjerg and Gram, 2012). Hence, judicious use of QAC sanitisers 
within dairy manufacturing plants should be practiced and sanitiser rotation implemented 
to minimize the likelihood of tolerant populations establishing themselves and for greater 
overall effectiveness of antimicrobial activity (FDA, 2008). Sanitisers can be rotated using, 
for example, peracetic acid/hydrogen peroxide, which have been shown to be effective at 
inactivating biofilm cells of L. monocytogenes (Belessi et al., 2011). To illustrate, a study 
by Costa et al. (2016) showed that a peracetic acid/hydrogen peroxide sanitiser effectively 
reduced the attached populations of 16 persistent strains of L. monocytogenes (from a 
Gorgonzola cheese manufacturing plant) by more than 4 log CFU.

As with other bacteria, planktonic cells of L. monocytogenes are readily inactivated by 
common chemical sanitisers used in dairy processing, compared to inactivation when 
attached as biofilms on stainless steel surfaces (Luque-Sastre et al., 2018). Several decades 
of studies have also demonstrated that populations of L. monocytogenes cells attached to 
different materials respond differently to applied sanitizers (Table 4 shows some examples). 
These results highlight the need to select a suitable sanitiser when sanitation programmes 
are implemented in the dairy manufacturing environment, as both the sanitiser type, time 
of application, concentration and surface type to be treated, seem to influence the likely 
success of control of Listeria spp (Skowron et al., 2018).

Sometimes however, no matter the efficacy of a sanitiser, L. monocytogenes is found to 
persist in manufacturing sites. It has been suggested that suitable growth conditions in 
harbourage sites, i.e., shelters due to unhygienic design of equipment and premises, or 
unhygienic or damaged materials, favour Listeria and that the pathogen becomes hard to 
eliminate (Belessi et al., 2011, Carpentier and Cerf, 2011). Thus, physical maintenance of 
equipment is also important for minimizing the likelihood of L. monocytogenes endemic 
population development in dairy manufacturing plants.
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9
CONCLUSION

While it might be believed that sufficient information is known about L. monocytogenes 
to control this hazard in the dairy food chain, recent outbreak and recall events put 
in perspective the ability of this organism to colonize numerous ecological niches and 
remain dormant for many years in a processing environment. Finished product testing is 
not enough to ensure the safety of food production. Effective processing environment 
monitoring, through swabbing FCS and non-FCS, remains the most efficient pro-active 
approach to L. monocytogenes reduction. Recent advances in source tracking, especially 
with WGS, are helping to drive genomic approaches for a better characterization of 
resident strains, their resistance to cleaning agents and adherence to dairy product 
contact surfaces. Control measures can be customized for a better fit-for-purpose, with 
better hygienic design and a good rationale for the use of chemical cleaning agents. Based 
on the ICMSF equation for safe food (H0 - ΣR + ΣI ≤ FSO), good milking practices reduce 
the prevalence of L. monocytogenes in processed dairy (H0), pasteurisation reduces the 
contamination (if any) of processed milk with L. monocytogenes (ΣR), intrinsic product 
factors and process environment monitoring (PEM) ensure no late (re-) contamination 
events with L. monocytogenes occur (ΣI = ΣGrowth + ΣContamination), thus fulfilling the 
food safety objective (FSO) for safe processed dairy products.
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Table 1. Examples of recalls of commercial pasteurised dairy products due to Listeria monocytogenes in the last 5 
years. 

Dairy 

product

Recall date Type or Brand Country Involved in foodborne 

illness/outbreak

Butter March 2016 Tesco flavoured butters UK No

July 2017 Perron and Beure de Luc Canada No

July 2017 St Laurent Canada No

Jan 2018 Plaquette butter Belgium No

June 2019 Bandon Co-Op butter Ireland No

Cheese Jan 2015 Queseria Bendita soft cheese 
and sour cream

USA Yes

Sept 2015 Picnic Gourmet cheese spread USA No

Sept 2015 Karoun dairies cheese USA and Canada Yes

Oct 2015 Summer Fresh cheese dip Canada No

Nov 2015 Inverloch cheddar cheese Canada No

Dec 2015 Bothwell shredded cheese Canada No

April 2016 Kopobbi whole milk  
ricotta cheese

USA No

April 2016 Brewer’s Gold Irish soft cheese UK No

Oct 2016 Kuster’s cheese USA No

Feb 2017 Fromi cheese USA No

Feb 2017 Michigan Milk Producers 
Association (Saputo) Deutsch 

Käse Haus cheese

USA No

May 2017 Queso fresco cheese (Global 
Garlic Inc)

USA (from 
Nicaragua)

No

Oct 2017 Little Milk Co cheese Ireland No

Jan 2018 Creamed cheese containing 
fish

USA No

Jan 2018 Panera Bread cream cheese USA No

April 2018 Fromagère de la Brie brand, 
l’Explorateur soft  

ripened cheese

USA (from 
France)

No

Nov 2018 Green Cedar Ackawi cheese USA No

Nov 2018 Sprout Creek Margie cheese USA No

Jan 2019 Yorkshire Fine Cheese - 
Barncliffe Brie 

UK No

Feb 2019 JOD Food - Irish Cheddar 
cheese with chilli

Ireland No

April 2019 Société Fromagère  
de la Brie cheese

France (and 
other countries)

Yes

June 2019 Lactalis McLelland Galloway 
Coloured Medium  

Grated Cheddar 

UK/Scotland No

July 2019 Damse Mokke Koe Belgium/EU No
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Dairy 

product

Recall date Type or Brand Country Involved in foodborne 

illness/outbreak

Cream Aug 2015 UK pasteurised double cream – 
affecting several companies

UK No

Dairy 
dessert

June 2019 Cadbury UK (Müller UK) UK No

Ice cream Jan 2015 Full Tilt ice-cream USA No

Jan 2015 Pink’s ice-cream USA No

March 2015 Blue Bell ice-cream USA Yes

April 2015 Jen’s Splendid ice cream USA No

July 2016 Agave ice cream USA No

Sept-Oct 2016 Blue Bell ice cream 2nd recall USA No

Oct 2016 Nestle ice cream USA No

Oct 2016 Publix ice cream USA No

Oct 2016 Blue Bunny ice cream USA No

Oct 2016 Chocolate Shoppe ice cream USA No

Nov 2016 Weight watcher’s cookie 
dough sundae

USA No

Nov 2016 Ashbey’s Sterling ice cream USA No

Nov 2016 Cedar Crest ice cream USA No

Nov 2016 AC Creamery ice cream USA No

Nov 2016 Agave ice cream USA No

Nov 2016 L.A. Creamery ice cream USA No

Nov 2016 McConnell’s ice cream USA No

Dec 2016 Foxy’s ice cream USA No

Dec 2016 Snow Monkey ice cream USA No

April 2017 Wholesome foods vanilla cup Canada No

Jan 2018 Fieldbrook Foods ice cream USA No

Sept 2018 Reilly Craft Creamery ice 
cream

USA No

Oct 2018 Working Cow Homemade ice 
cream

USA Yes

Liquid milk June 2016 Neilson chocolate milk Canada Yes
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Table 3. Summary table of the growth parameters for L. monocytogenes.

Growth Conditions

Temperature Range: 0.6 – 45°C
Optimum: 37˚C

pH Range: 4.4 – 9.4 
(minimum of 5.2 in fermented dairy)

Atmosphere Facultative anaerobe

Water Activity Minimum aw = 0.92

Toxin or infection Infection

Inactivation/survival dynamics

Inactivation Temperature Inactivated (D-value) at 72°C / 0.9 – 2.7s in milk
Survives under freezing condition (-18 to -20°C) 

pH Tolerance to severe acid stress (pH 3.5) has been shown to be induced if exposed to 
mild acidity (pH 5.5) for a time

Water Activity Survives aw ≤ 0.83 

Inhibition Inactivated by potassium sorbate (2000 – 3000 ppm) 

Table 4. Examples of inactivation (log reductions) of L. monocytogenes biofilms (48 – 72h) when treated with 
commonly used sanitisers on different surface types (compiled from Korany et al., 2018; Krysinski et al., 1992; Ronner 
and Wong, 1993; Skowron et al., 2018).

Sanitiser tested Log reduction 
(stainless steel)

Log reduction 
(rubber)

Log reduction 
(polyester / polyurethane)

Log reduction 
(polystyrene)

Chlorine (sodium 
hypochlorite)

(1 – 5 min, 0.5%) 
1.97 – 3.55

(2 min, 100ppm) 
4.5

(10 min) 
1.3

(1 – 5 min, 0.5%) 
1.79 – 2.21

 (10 min) 
<1

(1 min, 200ppm) 
2.57

Peracetic acid  
(with or without 
hydrogen peroxide)

(1 – 5 min, 0.5%) 
6.63

(10 min) 
(>4)

(1 – 5 min, 0.5%) 
5.10 – 5.70

(10 min) 
1.4

(1 min, 200ppm) 
3.85

Acid anionic (2 min, 200ppm) 
4 – 5

(10 min) 
(>4)

(2 min, 200 ppm) 
<1

(10 min) 
<1

-

QAC (1 min, 200ppm) 
4

(1 – 5 min, 0.5%) 
4.06 – 5.01

(10 min) 
(>4)

(1 – 5 min, 0.5%) 
1.72 – 3.14

(10 min) 
1.4

(1 min, 400ppm) 
2.20
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